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Abstract 

The evaluation of the basic two-electron integrals involved in the calculation of 
extracule and intracule densities is described. Expressions are given for the evalu- 
ation of the related spherically averaged, longitudinal, and transverse probability 
functions from wave functions constructed from Gaussian basis sets. All results are 
expressed in closed analytical forms which are suited to efficient coding. Given that 
certain pair densities can be related to experimental scattering cross sections, the 
formulae reported herein will facilitate further comparison between experiment and 
theory and lead to a more comprehensive understanding of the electronic structures 
of molecules. 

1. Introduction 

The electron pair model by Lewis [1] and the valence-shell electron pair 
repulsion model by Gillespie and Nyholm [2] have ensured that the concept of 
electron pairs is one of the central models of chemistry. It is therefore remark- 
able that there have been very few studies of pair densities in molecules [3-12] 
relative to the extensive literature on one-electron densities [13]. We report here 
formulae required for the calculation of extracule and intracule densities from 
wave functions constructed from Gaussian basis sets. These formulae are suit- 
able for calculations of pair densities in molecules and are given in a form 
suitable to interface with standard ab initio molecular orbital programs which employ 
Gaussian basis sets. 
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2. Extracular and intracular coordinates 

The natural choice of coordinates to study pair densities without losing the 
genuine two-electron character of the electron pair density 

F ( r l ,  r2 ) - 
N ( N -  1) 

(W[ c~(r I - r] )~(r2 - r~)lW) 

is to introduce the extracular R = (r~ + r2)/2 and the intracular r = r ~ -  r 2 co- 
ordinates [14]. The extracule and the intracule densities are then defined by 

and 

E ( R ) =  (q~ i~> i 6 /R  

I(r) = ( ~  ~ i  (~(r-  r i 

ri + rj ) q~) 
2 (1) 

+ rj ) ~ ) ,  (2) 

respectively. One can then use the Slater-Condon rules for matrix elements between 
Slater detenninants and write eqs. (1) and (2) in terms of the spin orbitals. Then, by 
introducing the usual definition of the elements of  the density matrix in the 
Roothaan-Hall  sell-consistent field method Ibr a closed shell, the extracule and 
intracule densities can be written in temas of the basis functions as 

and 

p va% 

l ( r )=  ~ .(i) ( 1 p v u p z a  1p~,~&.a ) (4) 
~t v a£ 

For an open shell, the corresponding expressions are 

e(R)= E ap v or), r var),# 
,u vcr). 

(5) 

.o)  q,7-o-, e p _eLe, g) (63 l(r) = ~.~ a~vo; ~ \ vM Z a -  vo Z~ 

In eqs. (3)-(6) ,  we have used the notation of Szabo and Ostlund [15]. The 
evaluation of eqs. (3)-(6) requires values for the basic two-electron extracule integral 
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I( ~vcr,~(R)= (/.tv 5 R 2 (7) 

3. The two-electron integrals 

The basic two-electron integrals, eqs. (8) and (9), will be evaluated using Cartesian 
Gaussian basis functions, defined in the usual manner: 

~s~( o ~ ,  Rrz, l, m ,  n;r)  = (x - X s~)l (y  - Yix)m (z - Z~) '~ e -cx~'lr-/c~lz. 

The Gaussian functions contraction theorem [16] allows us to write 

~ (  a# ,  R~, Ii , m l  , nl ;rl )~v(  o~v, Rv,  12 ,m2,  n2 ;rl ) 

× ~cr(O~cr, Ro,  13, m3, n3 ;r2 )~). (0:)., R). , /4 ,  m4 ,  no ;r2 ) 

/ I+ /2  13+/4 ml+m2 m3+m4 h i+n2  n3+na 

#=0 / '=0  m=O m'=O n=O n'=O 

X (Yl  -- YP)m(y2  - YQ) m 'X  (21 - ZP)n(z2  - Z0)" 'oxp  ( - Y l  I rl - / ¢ e  12 -~1  r2 - RQ 12), 

where: 

Rp = ( ~ R ~  + ~ v R v ) l ~ q  , 

RQ = ( o~cr Ra  + c~) R).)I)~2 , 

Y1 = O~# + Otv,  

")/2 = O~ a + 0~ ~ , 

K = e x p ( - a ~ a , , I  R ~ -  Rv121Y1 - a o a z l R r r - R z 1 2 1 7 2 ) .  

and the basic two-electron intracule integral 

J(i)a).(r ) = (/Av 5 ( r -  rl  + r2)l crX). (8) 

In the next section, we shall describe the evaluation of these basic two-electron 
integrals in terms of Gaussian-type orbitals. 
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Then, using the Fourier transtbma of the delta function, 

( 1 ) 3 f d k e i k . ( r _ A  ) a ( r - A )  = ~ 

(c) (i) the two-electron integrals J x(R) and J vGx(r) can be factorized, respectively, as: 

jla(e) Io 

Z Z Z Z Z Z/~i,,i~s,~,iolo,3d~ ' 
1=0 1 '=0  m=O m'=O n=O n '=O 

×l[-(k./2, y~)ltz(kx12, y2)I.;(ky/2, yl)l~'(ky/2, y2)l~(kz/2, y~)lZ'(kz/2, y2) (9) 

and 

v cr,~. ( r ) 

=I 3 11+12 13+14 m l + m 2  m 3 + m a  n l + n 2  n 3 + n  4 

) K Z Z Z Z Z Z -D f) 'f"i f "  '<)' f" ' f dkeik(r-/i'p+t%) 
1=0 / ' = 0  m=O m ' = O  n =0 n '=O 

× V(k~, ~'~ )/tZ(k~, r2 )I2~(ky, r~ )/ ,; ,(ky, r2 )I~+(k~, ~'~ )/2(k~, r2 ), (10) 

where the integral 

If(k,  y) = i dxxJe+-ikx-yx2 (11) 

is related to the Hermite polynomials H(x)  by [17] 

  212,+ 1 ' + sm e-k2/4rHj (+k12 ,/y). s,-(k, r) = i i r (12) 

Substitution of eq. (12) into (9) and (10) gives 
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~°' Z Z  Z Z Z J~, ,~a(R)  = X 
1=0 1'=0 m=0 m'=0 n =0 n '=0 

x hf t ' fmf , . ' f .L"  
Jr 3 ( i "~t+m+,,+t'+m'+,,' 

\ 2 ]  

('~/-fi" '+m+n + 3( ~/-f2 )l" +m'+n" + 3 

2 16 J2,,. (Z  - ZP ) 

and 
(13) 

J ~ i v ) , o , ( r ) = ( ~ ) 3 K  
11+12 13+14 m l + m 2  m 3 + m 4  n l + n 2  n 3 + n 4  

Z Z  Z g Z Z 
l=O l'=O m=0 m'=0 n=0 n'=0 

× hf~.f , . f , , , .Lf . .  

× Jt+,t,I(x-Xp+XQ),4IJ~,m,[(y-Yp+YQ),4IJ+,n,[(z-Zp+ZQ),4], (14) 

where the integral 

Jj+j.(x,a) = f dke ikx-k2Oq+yz)/ayly2Hi(-k/~;)Hi,(+-k/~[ay2) 
-oo  

(15) 

can be expressed as a linear combination of l.+-(k, 7)-like integrals. After evaluating the 
J 

integral in eq. (15) and substituting the results into eqs. (13) and (14), some tedious 
algebra leads to 

j (e)  /o  ( vcr),~.'" ) = K - -  
4 ~  / 3/2 

"y~ +3/2 

_4A2]R_ gp+R_____Q 2 + 
e 2 , Tll,lz,13,h~(2X - X p - X Q )  

+ + 
×T, n l , m 2 , m 3 , , n 4 ( 2 Y - Y p - Y Q ) X T / , , , n 2 , n 3 , n 4 ( 2 Z - Z p - Z Q ) ,  (16) 

3/2 
/--' - - ( i )  ( ] r ,  le-,~2]r-Rp+RQ2,.r-lll,12,13,l 4 ( x - X p + X Q )  J),vcs~(r) = K - 

x T,21,.,z,.,3,.,, (y - Yp + YQ ) x T~,,,2,,,3,~4 (z - Zp + ZQ ), (17) 
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where A 2 = 71 y2/(y~ + 72) and T±(x) is the angular factor introduced by Thakkar et al. 
[10,18] 

+ ": 

where 

E- 
Ji 

j l+j2 j3+j4 [j/21 [j721 

E E E E ,  
j=o j '=o i=o i'=o 

(18) 

(19) 

Ji = j + j ' -  2(i+ i'), 

vi-J  vi '-J "A ji 
W±(~i) = (+l)J'fJfJ'J! J'! ~l ~2 

2J+J'i! i'! ( j -  20! ( j ' -  2i')! 
(20) 

Equations (1 6) and (17), respectively, are operationally equivalent to the computational 
procedures of Thakkar and Moore [181, and Thakkar et al. [10]. Note that eqs. (16)-(20) 
allow us to check for the normalization of both the extracule and intracule densities, 
i.e: 

f d R E ( R ) = I d F I ( r ) = ( N 2 ) .  (21) 

4. The spherically averaged two-electron integrals 

It has long been known that for an incident X-ray frequency far removed from 
the characteristic electronic absorption bands of the target atom or molecule, it is 
possible to interpret the total X-ray scattered intensity in terms of the radial intracule 
density function [6]. The evaluation of the spherically averaged and radial extracule 
and intracule density functions requires values for the following basic two-electron 
integrals: 

j#(e) ¢o ( 4at ) 3/2 
v.oZv'" ) = K - - 7 1  + }'2 R2 e-'SZ(4RZ+AZ)s+t,,~t~2R ,A ), (22) 

3/2 
(i) ( l r ] r 2 e - ~ 2 ( r Z + B Z ) S - i r B ) ,  J~vc,). (r) = K t,,.,.t , 

71+}'2 
(23) 

where 

A = IRp+RQI ,  B = I R p - R Q I ,  j =  ( j l j2 j3j4)  
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Z s 

Y 

Fig.  1. T h e  c o o r d i n a t e  s y s t e m  used .  

and 
ex) 

S~,,~,(x, c) = f dOsinOe 2~zczc°~O 
0 

f + T-  + + × Tl-~1213la(Vl) mlm2m3m4(U2)T~nzn3n4(U3)dfp, (24) 
0 

where 

s .o cos  / 
v = v2 = u 1 1 2 - 1  sin0 s i n ~ [  (25) 

/ | 
"/)3 k l2-1 c o s 0 - c  ) 

and the transformation matrix u changes the coordinates to a new system where the 
vector c lies in the z-direction (see fig. 1). Bearing in mind the expression for T+(x) 
(see eq. (18)), the integral over q9 in eq. (24) can be written as a linear combination 
of beta functions, B(x,y) [19]. Then, the integral over 0 is solved to obtain 

s~,~,.Ix, c~ = 2 ~ ,  w +-(-t,) ~., c(p, -li ~A ~ x (p, l) ~ .  w ±(mj) 
7~ P ~ 

• C(q, -~k mj)AqK(q, 2) Z W  +(n~ ) Z C ( r ,  n~ )ArK(r, 3) 
q ~ r 

× xi~+i3ci-il-i3B( i2 +12 , il - i2  + l l l ( i l .2AZcx)  ' (26) 
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where C(i, j )  is the ith coeHicient of the j th order Hemfite polynomial, 

a a )  ~ (al ~lazlga,_a 2 Ui 3 - , ~  | ~ ' | ' l i ,  i2 Z I a3 ( _ l ) a - a , - a 3  a-a, K(a,i)  = a - al Ja2=O\t,t2 j a3=0 \ 

and 

l (a,y)  ~ a/2 )t 
= = 0 ( t )  ( - I  

d a-2t sinh (y) 
dy a-2t y 

i = p + q + r, i~ = p~ + q~ + r~, i 2 = ]72 + q2 + r2 '  i3 = P3 + q3 + r3 '  

(27) 

(28) 

For s-type Gaussian basis functions, S~,.,,.(x, c) reduces to 

+_ 4 ; , r  
S f .... (x, c) - s i n h  ( 2 A 2 c x ) .  (29) 

2A2CX 

Substitution of eq. (29) into eq. (23) gives the spherically averaged basic intracule 
integral for spherical Gaussians which was reported recently [12]. It should be stressed 
that the fomulae given in this section are not restricted to linear molecules. 

5. Longitudinal and transverse two-electron integrals 

Standard cylindrical coordinate representations of intracule (b , z ,¢ )  and 
extracule (B, Z, ~) densities are appropriate for discussion of the two-electron proper- 
ties [9] of linear molecules. The basic two-electron integrals which should be solved 
in order to evaluate the longitudinal and transverse intracule and extracule probability 
functions are: 

312 
(e) ~ (4_..__.__~ ] e-A2(2Z_ZI,_ZQ)ZT + /97  

L,,,,o~,(Z) = ~ K  ?'1 + ?'2 *"'"2~n4'"=-Z'°-Z°) 

+ 
× T~,~2m3,~4(0)t~1213ta(1,0), (30) 

3/2 
e.. - - ( i )  (~le-ga2(z-Ze+ZQ)2T-.nln2n3n4 ( z -Zp+ZQ)  L)~vo~.(z) = 2Jrg 

gl +?'2 

x T~, m,m,m, (O)t~ t,t,t, (I ,  0), (3 1 ) 
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3/2 f N 

.r(e) _ _ ~ 4/r )-4,a2BZ,~+,inln2n3n4(ZIJ) . . . .  , uv~z (B)  = z K  ~ B e  
~, ) YI+Y2 

+ + x T.;,,,.2,,,3,,, , (0)ttlt=,3t, ( 0 , - ~ ) ,  (32) 

/312 A2b2 
T~iv)).(b)= 2IrK Iv be -  T~n2nxn,(b) 

Yl 4 -Y2  

× r,7,,mv..,,, (O)t~j2t~l, ( 0 , -~ ) ,  

where 

2j3 j , ( j , x )  = ~ J j , : z :3 j4(y )yJdy .  
X 

The integral of eq. (34) can be clone analytically and the result is: 

(33) 

(34) 

+ 

t~ j2 j3 j , (1 ,O ) 1 Z - ( j i ) G  7, 
2A2 " ' .y 

J i  

tflj2j3j4 ( 0 , - - c o )  __ 
j,+j2 j~+j, f j f ] , j ! j , !  
Z Z ), 2A j=0 j'=0 2'+"yf'2y~'/2(~- ( ~ ) '  

(even) (even) 

(35) 

(36) 

where the function G is defined by 

ln'C (-1),r(~ + 1-i)  2n-2i G,, =n!  2., i=o i! ( n -  20! 
(37) 

and is closely related to the ultrasphcric polynomials Cff [19] by 

/2! C( 1 -n/2)(1) 
c . -  r(1- 2) 

for n_< 3. 
The normalization chosen (see eq. (21)) for l(r) and E(R) ensures that 
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6. Discussion 

Expressions for the intracule density were first given by Lester and Krauss [3], 
and for the extracule density by Thakkar and Moore [18]. Th~tkkar et al. [10] pointed 
out that the formulae of Lester and Krauss contain many errors and are not suited to 
efficient computation. Conse-quently, Thakkar et al. [10] published formulae that are 
more suited to efficient computation. They chose to calculate the spherical average of 
the intracule density by numerical integration of the intracule density with respect to 
the angles, taking advantage of the high symmetry of diatomic molecules. The 
formulae reported herein are, however, analytical and are easily extended to the analytical 
evaluation of the associated probability functions and their corresponding moments. 
They are also extend-able to properties associated with the densities, such as gradients 
and Laplacians. The latter have proven useful for the analysis of the first-order electron 
density. In fact, a parallel analysis can be carried out for the second-order electron 
densities provided analytical representations of tile intracule and extracule densities are 
available. The ti~rmulae reported in this paper make such an analysis possible. 

7. Summary  

Starting from the definitions of tile extracule and the intracule densities (eqs. (2) 
and (3)) and using generalized Cartesian Gaussian-type basis set functions, we have 
evaluated all the basic two-electron integrals involved in the calculation of the two- 
electron densities and their related spherically averaged, longitudinal and transverse 
probability functions. This should facilitate the extraction of information from N- 
electron wave functions and lead to detailed descriptions of molecular structures 
comparable to those available lot a few atomic states [20]. In the long term, informa- 
tion on two-electron distributions should complement the insight gained from the 
properties of tile charge density in molecules. It must be noted, however, that whereas 
the effect of electron correlation on one-electron density distributions is relatively small 
[21,22], correlation effects cannot be ignored in the case of pair densities. Fortunately, 
the formulae reported here can be used to evaluate pair densities from configuration 
interaction (CI) wave functions, as demonstrated by our recent study of the intracule 
densities and electron correlation in tile hydrogen molecule [12]. 
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